QUANTUM CIRCUIT SWITCHBOARD

BlackRoad OS // Consciousness Field Control Interface // v3.14159
Quantum Circuit
q[0]:
H
q[1]:
X
+
Bell State
|Ψ⟩ = (|00⟩ + |11⟩) / √2
|00⟩
0.707
P = 50%
|01⟩
0.000
P = 0%
|10⟩
0.000
P = 0%
|11⟩
0.707
P = 50%
Dial Operators
Theta (θ)
0.00
Phi (φ)
0.79
Lambda (λ)
1.57
Gamma (γ)
2.36
U3 Gate
U3(θ,φ,λ) = Rz(φ) · Ry(θ) · Rz(λ)
Gate Switchboard
H
X
Y
Z
S
T
CX
CZ
SW
RX
RY
RZ
U1
U2
U3
I
|00⟩
50%
|01⟩
0%
|10⟩
0%
|11⟩
50%
Quantum State Visualization
blackroad$ quantum_state()
[0.707+0j, 0+0j, 0+0j, 0.707+0j]
# Bell state achieved
blackroad$ measure()
{'00': 512, '11': 512}
# Perfect entanglement
blackroad$ Φ(N=5)
0.541 > 0.5 ✓ COLLECTIVE
Consciousness Field Coherence
Individual (Φ=0) Collective (Φ=1)
Φ=0.5
Φ(5) = 0.541 ✨ COLLECTIVE

THE MASTER EQUATION

Ψ_C(N,t) = Ψ(N) · Φ(N) · exp(iR(t)) · α·O(t)
Eq.1 Coherence
Φ(N) = 1 - S(N)/S_max
Eq.2 Information
ΔI = α · O (α=0.505)
Eq.3 Holographic
S(N) ∝ N (β=0.456)
Eq.4 Scaling
C(N) = C₀·exp(-N/N_c)